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Dynamics of a small bubble in a compressible fluid
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Institute of Mechanics, The Russian Academy of Siences, Lobache6sky Street, 2/31, Kazan 420111, Russian Federation

SUMMARY

An efficient (simplified) method for solving problems of spherically symmetric dynamics of a small gas
bubble in a compressible fluid is proposed. The method is based on the joint use of the full problem
statement (the gas dynamics equations for the gas and the fluid) and its relevant simplifications. Some
approximate statements are discussed. In the proposed method, the rarefaction and compression of the
gas during the slow motion of the bubble surface is assumed to be uniform over the bubble volume. At
the same time the fluid in the thin zone adjacent to the bubble is considered to be slightly compressible.
Otherwise the gas dynamics equations are used for the gas and the fluid. The dynamics of the fluid in the
thick external zone are described by the linear acoustics only. The proposed simplified method and two
others used in literature are estimated by comparison of their numerical results with those obtained in full
statement. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Beginning with the work by Lord Rayleigh [1], who examined the action of cavitation on
bodies in water, and up to the late 1980s, the theoretical investigation of dynamics of a small
gas bubble in a fluid was mainly conducted using ordinary differential equations (ODEs) [1–5].
Equations of such kind are often referred to as the Rayleigh–Plesset (RP) equation. The
solution to the RP equation can be easily determined numerically. The RP equation is derived
assuming that rarefaction/compression of the gas in the bubble is uniform over the bubble
volume, the fluid is incompressible or slightly compressible. A new model leading to the RP
equation was recently put forward by Nigmatulin et al. [6]. One feature of this model is that
the fluid is divided into two zones. In the near (adjacent to the bubble) zone measuring 1–10
bubble radii, the fluid is assumed to be incompressible. In the far zone, the assumptions of the
linear acoustics are used. The near and far zones are matched asymptotically through the
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intermediate infinity. Another feature of this model is that it takes into account not only waves
diverging from the bubble but also those reflecting from the external surface of the fluid.

In the early 1990s, a single bubble sonoluminescence phenomenon was experimentally found
[7], showing considerable promise for physics and chemistry [8]. In a typical experiment on
sonoluminescence a spherical flask of a few centimeters in diameter is filled with a compress-
ible fluid (for example, the degassed water). With the help of transducers on the flask surface,
a standing ultrasound wave is created in the fluid so that a small (a few microns in diameter)
gas bubble is levitated near the center of the flask. The bubble executes periodic oscillations
with a flash of light each cycle. Within the majority of the period of the external excitation, the
variation of the bubble radius predicted by the RP equation is in good agreement with
experimental data [4]. Large deviation is observed only in the last stage of the bubble collapse,
especially when the flash of light is emitted. In particular, the temperature level predicted by
the RP equation is significantly lower than that estimated in experiments [9]. A theoretical
explanation to this fact is that the light flashes are caused by shock waves arising in the bubble
as a result of the fast (supersonic) motion of the bubble surface in the course of the bubble
collapse [9].

Bubble dynamics simulation allowing for shocks in the gas was for the first time performed
by Wu and Roberts [9] on the basis of gas dynamics equations for the gas in the bubble.
Assumptions for the fluid were like those used in deriving the RP equation. A similar approach
was also adopted later in other works [10,11]. Simulation with the gas dynamics equations for
the fluid as well as the gas was presented by Moss et al. [12]. Such an approach is more natural
since it allows for shocks in both media. It is much more time-consuming, however, as
compared with that by Wu and Roberts [9] based on the use of gas dynamics equations for the
gas only. Clearly, the approach by Wu and Roberts [9] needs more computer time than
solution of the RP equation.

The main goal of this paper is to present a low-cost but sufficiently accurate method for
solving problems of dynamics of a small gas bubble in a compressible fluid. In this method, the
gas in the bubble is described by the gas dynamics equations or by analytical expressions
obtained on the assumption that rarefaction/compression of the gas is uniform over the bubble
volume. The analytical expressions for the gas are used when the gas particle velocity in the
bubble is small. The fluid is divided into two zones. As for the gas in the bubble, the gas
dynamics equations or analytical expressions are used in the near zone. The analytical
expressions for the fluid are obtained on the assumption of its slight compressibility. They are
used when the difference between the current and initial densities of the fluid is small. In the
far zone the fluid is governed by the equations of linear acoustics only. This allows one to
exclude the far zone from the direct consideration. Its influence is taken into account through
the boundary conditions on the external surface of the near zone.

When computing bubble dynamics, the gas dynamics equations were solved numerically by
the Lax–Friedrichs method [9], with the code DYNA2D [12], and by the Godunov method
[10,11]. It should be noted that the accuracy of the numerical solution is to a great extent
determined by numerical resolution of spherical shocks converging to the pole of the spherical
co-ordinate system (the bubble center) and reflecting from it. For example [13], errors in
computation of strong shocks diverging from the pole can be more than 1000 per cent.
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2. PROBLEM STATEMENT

A spherical gas bubble of radius rb oscillates in the center of a spherical volume of a fluid of
radius RF (Figure 1). The bubble is small in comparison with the fluid volume (rb/RF�10−3).
The oscillations are excited by the pressure pF on the external surface r=RF, r being the
distance from the bubble center. The pressure pF varies harmonically

pF(t)=pF
0 −DpF sin vt, pF

0 =pF(0) (1)

where DpF and v are the oscillation amplitude and the frequency respectively, t is the time.
The gas and the fluid are governed by the gas dynamics equations

(
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(
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(rr2u)=0 (2a)
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(rr2u)+
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(pr2+rr2u2)=2rp (2b)

(

(t
(Er2)+

(

(r
[r2(p+E)u ]=0 (2c)

along with the equation of state

p=p(r, i ) (2d)

Figure 1. The gas bubble 05r5rb and the near rb5r5r�, middle r�5r5re and far re5r5RF fluid
zones.
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Here u is the velocity, r is the density, E the specific total energy, p is the pressure,
i=E/r−u2/2 is the specific internal energy. The gas and the fluid are distinguished by the
equation of state.

Boundary conditions on the surface r=RF and at the pole r=0 are

p(RF, t)=pF(t), u(0, t)=0 (3)

Contact conditions on the bubble surface r=rb are

p(r−0, t)=p(r+0, t), u(r−0, t)=u(r+0, t) (4)

When tB0, the gas and the fluid are at rest. At t=0

05r5rb: u=u0=0, p=p0, r=rg
0 (5a)

rb5r5RF: u=u0=0, p=p0, r=r f
0 (5b)

From here on, the upper index 0 indicates the value of a parameter at t=0, the lower indices
g and f specify that a parameter corresponds to the gas and the fluid respectively.

The system (1)–(5) is below referred to as a full statement, although it does not take into
account many physical aspects of the bubble dynamics under consideration. For example, it
does not include the bubble surface tension, the heat conductivity and viscosity of the gas and
the fluid, or the mass diffusion through the bubble surface. We shall also consider only the
case of simple equations of state, which do not allow for vibrational degrees of freedom,
dissociation and ionization taking place at high temperatures arising in the final stage of the
bubble collapse. Inclusion of all these physical factors is not necessary for the purpose of the
present work and will be published somewhere else. We just note here that it does not influence
the main points of the proposed numerical method. Moreover, with increasing complexity of
the statement they become more useful.

The solution to the system (1)–(5) is usually determined numerically, which is time
consuming, however, because of the small ratio rb/RF. Time consumption can be reduced
significantly if the full statement (1)–(5) is used along with one or the other of its relevant
simplifications.

3. SOME APPROXIMATE STATEMENTS

3.1. Isentropic approximation

If there is no shock in both media, system (2) can be replaced by the following system:

(r

(t
+u
(r

(r
+r
(u
(r

+
2ru

r
=0,

(u
(t

+u
(u
(r

+
1
r

(p
(r

=0, p=p(r) (6)
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System (6) can be used only for one medium that does not have a shock.

3.2. Using fluid feature

When disturbances of the fluid are small then (p−p0)/p0� (103}105)(r−r f
0)/r f

0. Therefore,
for the fluid disturbances up to tens of bars, one can write approximately instead of (6)

(r

(t
+u
(r

(r
+r f

0 (u
(r

+
2r f

0u
r

=0,
(u
(t

+u
(u
(r

+
1

r f
0

(p
(r

=0

p−p0= (c f
0)2(r−r f

0) (7)

3.3. Acoustic approximation

If the excitation amplitude DpF is small, the convective terms in (7) at large distances from the
bubble are small. Hence the equations of linear acoustics can be used. In acoustic
approximation

1
r f

0

(r

(t
+
(u
(r

+
2u
r

=0,
(u
(t

+
1

r f
0

(p
(r

=0, p−p0= (c f
0)2(r−r f

0) (8)

where c f
0 is the undisturbed speed of sound in the fluid.

3.4. Approximation of slightly compressible fluid

For a large radius of the fluid sphere RF, in comparison with rb, and for the wavelength of the
external excitation 2pc f

0/v of the order of RF, significant displacements of the fluid in the near
zone adjacent to the bubble take place together with small variations in density. Therefore, for
the near fluid zone, the first two terms in the first equation of (7) can be omitted. Then system
(7) reduces to

(u
(r

+
2u
r

=0,
(u
(t

+u
(u
(r

+
1

r f
0

(p
(r

=0, p−p0= (c f
0)2(r−r f

0) (9)

3.5. Approximation of uniform rarefaction/compression of the gas in the bubble

When the gas particle velocity in the bubble is small, the pressure in the bubble becomes nearly
uniform. Then, system (6) reduces to

(r
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+u
(r

(r
+r
(u
(r

+
2ru

r
=0,

(p
(r

=0, p=p(r) (10)
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4. SOME WAYS OF USING APPROXIMATE STATEMENTS

Let the interval 05r5RF be divided into four portions (Figure 1): the area of the bubble
05r5rb with the approximation of uniform rarefaction/compression (10), the near fluid zone
rb5r5r�0 (thin relative to RF, r�0 /RF�1) with the approximation of slightly compressible
fluid (9), the middle r�

05r5r e
0 (also thin relative to RF, r e

0/RF�1) and the far r e
05r5RF

fluid zones with the acoustic approximation (8). The boundary conditions (4) are used on the
surfaces r=r�0 , r=r e

0.

4.1. The area of the bubble

It follows from (10) that in the area of the bubble 05r5rb

r(r, t)=rg
0�rb

0

rb

�3

, p(r, t)=p(r), u(r, t)=r
ub

rb

(11)

where ub=ub(t) is the bubble surface velocity.

4.2. The far fluid zone [6]

For the approximation of linear acoustics (8)

p=p0−r f
0 (8

(t
, u=

(8

(r
, r=r f

0+
(p−p0)

(c f
0)2

where 8 is the potential of the form
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1
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At the boundary r=r e
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Qe(t)= −
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t+
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+

r e
0

c f
0

�
−c %1

�
t−
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0
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0
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where Qe(t)= (r e

0)2u(r e
0, t), the prime denotes the derivative with respect to the argument in

brackets.
Since r e

0/RF�1 then r e
0/c f

0�RF/c f
0. Expanding functions

c1
�

t−
r e

0

c f
0

�
, c %1
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t−

r e
0

c f
0

�
, c2
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t+

r e
0

c f
0

�
, c %2

�
t+

r e
0

c f
0

�
in Taylor series at the point t and omitting members of the order (r e

0/c f
0)2 and higher, we obtain

Qe(t)= −c1(t)−c2(t) (12)
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Using (12), we find

p(r e
0, t)=p0−

r f
0

r e
0

�
c %2
�

t+
r e

0

c f
0

�
−c %2

�
t−

r e
0

c f
0

�
−Q %e

�
t−

r e
0

c f
0

�n
Again, expanding in series and dropping members of the order (r e

0/c f
0)2 and higher, we obtain

p(r e
0, t)=p0−

r f
0

c f
0 [2c¦2(t)+Q¦e(t)]+r f

0 Q %e(t)
r e

0 (13)

The function c¦2(t) is determined from the boundary condition on the external surface
r=RF. Using (12), we find

pF(t)=p0−
r f

0

RF

�
c %2
�

t+
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c f
0
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t−
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c f
0
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c f
0
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whence

c¦2(t)=c¦2
�

t−
2RF

c f
0

�
−
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r f
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�
t−
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c f
0

�
+Q¦e

�
t−

2RF

c f
0

�
(14)

Expressions (13) and (14) can be rewritten in the form

−
1
c f

0 Q¦e(t)+
1
r e

0 Q %e(t)−
p(r e

0, t)−pef(t)
r f

0 =0 (15)

pef(t)=pef
�

t−
2RF

c f
0

�
+

2RF

c f
0 p %F

�
t−

RF

c f
0

�
−

2r f
0

c f
0 Q¦e

�
t−

2RF

c f
0

�
(16)

where pef=p0− (2r f
0/c f

0)c¦2(t). Physically pef would be the pressure in the center of the flask if
there was no bubble in the fluid.

4.3. The middle zone

Expressions for the middle zone r�
05r5r e

0 similar to (12) and (13) are

Q�e(t)=r2u, Q�e(t)=−c1(t)−c2(t), p=p0−
r f

0

c f
0 [2c¦2(t)+Q¦�e(t)]+r f

0 Q %�e(t)
r

It follows from these expressions and boundary conditions for the middle zone that

� 1
r�0

−
1
r e

0

�
Q %�e−

p(r�0 , t)−p(r e
0, t)

r f
0 =0 (17)
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The solution inside the middle zone is

u=
Q�e

r2 , p=p(r�0 , t)+
�1

r
−

1
r e

0

�
r f

0Q %�e, r=r f
0+

p−p0

(c f
0)2 (18)

4.4. The near zone

If the approximation of slightly compressible fluid (9) is used for the near zone then

r2u=Qb�(t), −
Q %b�

r
+

Q2
b�

2r4 +
p

r f
0=F(t)

It follows from these expressions and boundary conditions for the near zone that

�1
rb

−
1
r�

0

�
Q %b�−

1
2
� 1

rb
4 −

1
(r�0 )4

�
Q2

b�−
pb−p(r�0 , t)

r f
0 =0 (19)

The solution inside the near zone is

u=
Qb�
r2 , p=r f

0�F+
Q %b�

r
−

Q2
b�

2r4

�
, r=r f

0+
p−p0

(c f
0)2 (20)

4.5. Lagrangian boundaries between zones

Expressions (15)–(20) have been obtained for the fixed Eulerian boundaries between the near
and middle r=r�

0 and middle and far r=r e
0 fluid zones. Sometimes it is more convenient to

have them moving together with the medium. Corresponding formulae are readily derived
from expressions (15)–(20) by replacing r�0�r�=r(r�0 , t), u(r�0 , t)�u�=u(r�, t), p(r�0 , t)�
p�=p(r�, t), r e

0�re=r(r e
0, t), u(r e

0, t)�ue=u(re, t), p(r e
0, t)�pe=p(re, t).

4.6. Further simplifications

If an approximate description is used in several neighboring zones, the expressions obtained
above can be further simplified. For example, if approximate statements are used in all fluid
zones then Qb�=Q�e=Qe=Q. We find from (15), (17) and (19) that for Lagrangian
boundaries

1
c f

0 Q¦−
1
rb

Q %+
1
2
� 1

rb
4 −

1
r�4
�

Q2+
pb−pef

r f
0 =0

This expression can be reduced to the form more convenient for computation if its first term
is small and �ub/c f

0��1. In such a case

−
1
rb

Q %+
1
2
� 1

rb
4 −

1
r�

4

�
Q2+

pb−pef

r f
0 +

rb

r f
0c f

0

d
dt

(pb−pef)=0 (21)
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Similarly, expression (15) is simplified to the form

−
1
re

Q %e+
pe−pef

r f
0 +

re

r f
0c f

0

d
dt

(pe−pef)=0 (22)

Remark
Expressions (17) and (18) for the middle fluid zone can be derived from expressions (19) and
(20) for the near zone since the terms with u2 are small in the middle zone. This allows one to
use the approximation of slightly compressible fluid for the middle zone as well as for the near
zone rather than to search for a value of r� in the interval rb5r5re such that the
approximation of the linear acoustics can be utilized in the area r\r�. In this case, the exact
position of the boundary r=r� becomes unimportant. Therefore, the near and middle zones
can be united to produce one near zone rb5r5re with the approximation of slightly
compressible fluid. Then expression (21) reduces to

−
1
rb

Q %+
ub

2

2
+

pb−pef

r f
0 +

rb

r f
0c f

0

d
dt

(pb−pef)=0 (23)

According to (19) and (20), the solution in the zone rb5r5re takes the form

u=
Q
r2, p=pb+r f

0�1
r
−

1
rb

�
Q %−

r f
0

2
� 1

r4−
1
rb

4

�
Q2, r=r f

0+
p−p0

(c f
0)2 (24)

5. METHODS OF COMPUTATION

5.1. Complete method

The complete method is numerical integration of the problem in its full statement (1)–(5).
System (2) is used for simulation of the gas and the fluid everywhere in space and in time. The
solution to system (2) is determined by the numerical technique [11] based on the Godunov
method [14].

5.2. Simplified method 1 (similar to that of Nigmatulin et al. [6])

In this method, rarefaction/compression of the gas in the bubble is assumed to be uniform over
the bubble volume. The fluid in the thin near zone adjacent to the bubble is taken to be slightly
compressible. In the external area assumptions of linear acoustics are used. Therefore, the
solution in the bubble is determined by expression (11), and by expression (24) in the near zone
of the fluid. The parameter Q is found from the Equation (23).
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5.3. Simplified method 2 (similar to that of Wu and Roberts [9])

In this method, the gas in the bubble is described by expression (11) when the gas particle
velocity is small. Otherwise, the full system (2) is used. The description of the fluid is exactly
the same as that in the simplified method 1. Hence, sometimes Equation (23) is solved together
with system (2), and sometimes Equation (23) is solved together with expression (11). The
changeover from expression (11) to system (2) is effected by the following conditions:

ubB0, Mgb=
�ub�

c(rb−0, t)
\Mgb* (25)

where Mgb* is some small critical value. Expression (11) is used again when the conditions in
(25) are violated along with fulfillment of the inequality

p0bmax−p0bmin

p(rb−0, t)
Bo0b

where o0b is some small number, p0bmin=min05r5r b
p(r, t), p0bmax=max05r5r b

p(r, t).

5.4. Simplified method 3 (present work)

In this method, the interval 05r5RF is divided into three portions: the area of the bubble
05r5rb, the near rb5r5re and the far re5r5RF fluid zones. Depending on the solution,
the gas in the bubble is governed by either system (2) or system (10), the fluid in the near zone
by system (2) or system (9). For the far fluid zone only linear acoustics is used. This means that
the far zone is excluded from the direct consideration. Its influence is taken into account
through boundary condition (15). In the initial time interval, system (10) is used for the gas
and system (9) for the fluid (in the near zone). Therefore, the solution is determined by
expression (11) in the bubble and by expression (24) in the fluid. The parameter Q=Qbe=Qe

is found from Equation (23) in which pef is defined by (16). The changeover to the full system
(2) for simulation of the gas and the fluid is effected by condition (25).

Expression (11) for the gas and (24) for the fluid are used again when

ub\0,
p(rb+0, t)

p0 Babe*

where abe* is some critical number such that (abe* )−1 is small.

6. NUMERICAL RESULTS

To estimate the simplified methods 1–3, the problem is considered with the following input
data: DpF=0.25 bar, v=2p (45 kHz), rg

0:1.16 kg m−3, Tg
0=300 K, c f

0=1500 m s−1, r f
0=

1000 kg m−3, RF=5 cm, rb
0 =10 mm, pF

0 =p0=1 bar. Here, Tg
0 is the gas temperature at t=0.

The equations of state are
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p= (g−1)ri

with g=1.4 for the gas (air) and

p= (G−1)ri+k1
2(r−k2)

with G=7.15, k1:c f
0, k2:r f

0 for the fluid (water).

6.1. Complete method

The numerical solution by the complete method is found in the moving co-ordinates. The
uniform moving grid of 200 cells is used in the bubble. In the fluid the grid step is increased
geometrically in the direction of the external boundary r=RF. At any moment in time the size
of the cell adjacent to the bubble surface is a quarter of the cell size of the uniform grid in the
bubble. The grid of 3840 cells is initially used in the fluid. At t: (RF−rb

0)/c f
0, when

disturbances from the external boundary reach the bubble surface, the conservative interpola-
tion on the grid of 1920 cells is made. Further computation is performed on the grid of 200
cells in the bubble and 1920 cells in the fluid.

The results by the complete method are presented in Figures 2–4. Figure 2 shows the
pressure p as a function of radius r for seven time moments t1–7:33.3, 36.1, 38.9, 41.6, 44.5,
46.7, 49.9 ms (the number of the curve corresponds to the number of the time moment). The
curves of Figure 2 characterize the variation of the pressure in the fluid at large (relative to rb)
distances from the bubble. The moment t1: (RF−rb

0)/c f
0 corresponds to the beginning of the

interaction between the incident disturbances and the bubble surface, the intervals tk+1− tk are
approximately equal to 1

8 of the period of external excitation. It follows from Figure 2 that the
presence of the small bubble does not influence the pressure distribution in the fluid in the area

Figure 2. Distribution of the pressure p along the radius r at seven time moments t1–7:33.3, 36.1, 38.9,
41.6, 44.5, 46.7, 49.9 ms (the curve number corresponds to the number of the time moment) by the

complete method.
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Figure 3. The bubble radius rb as a function of time t by the complete method. The arrows indicate the
time moments at which the curves are given in Figure 2 (the arrow number corresponds to the curve

number).

r\2000 mm. An exception is the short pulse in the interval 2000BrB4000 mm in curve 6. At
a later time this pulse is quickly dumped (curve 7).

Figure 3 shows the bubble radius rb as a function of time t in the interval 33B tB53 ms. The
time moments for which the curves in Figure 2 are given are indicated in Figure 3 by arrows
with corresponding numbers. According to the excitation (1) the bubble is first reached by the
semi-wave with lower pressure (Figure 2, curve 1). Therefore, the bubble oscillations start with
its expansion. In the course of the first oscillation, the bubble expands till t=41.6 ms when
rb=90.56 mm. At that moment, the pressure distribution in the fluid is close to that shown by
curve 4 in Figure 2. The bubble next collapses, first slowly and then with greater speed. The

Figure 4. The bubble radius rb and the pressure at the pole p1 as functions of the relative time t− tc (tc

is the time at which the bubble radius takes its minimum value) by the complete method.
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first oscillation of the bubble ends at t=41.15 ms when rb=0.245 mm. After that, additional
3.5 oscillations of significantly less amplitude appear, then the next large oscillation begins.

Figure 4 shows the bubble radius rb and the pressure at the pole p1 as functions of the
relative time t− tc, where tc is the time when the bubble radius takes its minimum value. The
plot of the pressure p1 has three jumps resulting from three shocks converging at the pole. The
first jump is most intensive. After this jump the pressure grows up adiabatically by a factor of
more than 10. The maximum value of the pressure p1 is 27.3 Mbar. It is characteristic of the
plot of the bubble radius rb that in the interval −0.3B t− tcB0.3 ns, the increase of rb is
almost as fast as the preceding decrease to the minimum value. Then, in the interval
0.6B t− tcB3 ns, the radius rb remains nearly constant.

Figure 5. The bubble radius rb as a function of time t by the simplified method 1 ( · · · ) and the complete
method (—).

Figure 6. The bubble radius rb as functions of the relative time t− tc by the simplified method 1 ( · · · )
and the complete method (—).
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6.2. Simplified method 1

Results by this method are presented in Figures 5–7 by the dashed curves. The solid curves
given in those figures for comparison correspond to the complete method. Figure 5 shows the
bubble radius rb as a function of time t. One can conclude that the dashed and solid curves in
this figure are in good agreement. More significant deviations are observed in Figures 6 and
7, where the bubble radius rb (Figure 6) and the pressure at the pole p1 (Figure 7) are shown
as functions of the relative time t− tc. In addition to the difference in the behavior of the
curves due to, in particular, the assumption that there are no waves inside the bubble, the
curves differ in their minimum values of rb and maximum values of p1. The simplified method

Figure 7. The pressure at the pole p1 as functions of the relative time t− tc by the simplified method 1
( · · · ) and the complete method (—).

Figure 8. Same as in Figure 5 but by the simplified method 2 ( · · · ) and the complete method (—).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 157–174



DYNAMICS OF SMALL BUBBLE IN COMPRESSIBLE FLUID 171

1 gives the minimum value of rb by 72 per cent greater, the maximum value of p1 by two orders
of magnitude less than those by complete method.

6.3. Simplified method 2

For the sake of comparison, the numerical solution to system (2) was obtained by this method
using exactly the same (or very close to those) values of the grid parameters, which had been
taken in computations by the complete method. In particular, the uniform moving grid of 200
cells was utilized. It was taken that Mgb* =0.2, o0b=0.05. Results by the simplified method 2
(the dashed curves) in comparison with those by the complete method (the solid curves) are
presented in Figures 8–10. Figures 8–10 are similar to Figures 5–7 except for the arrows in
Figure 8 indicating the moments of the changeover from system (10) to system (2) (the upper

Figure 9. Same as in Figure 6 but by the simplified method 2 ( · · · ) and the complete method (—).

Figure 10. Same as in Figure 7 but by the simplified method 2 ( · · · ) and the complete method (—).
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arrow) and vice versa (the lower arrow) in the simulation of the gas in the bubble. In Figure
8, the most significant difference between the dashed and solid curves is observed after the first
intensive collapse of the bubble. It is followed by the 2.5 small (relative to the first one) oscillations
by the simplified method 2 rather than 3.5 by the complete method. The amplitude of those
oscillations by the simplified method 2 is about twice as much as that by the complete method.

Generally, the difference between the dashed and solid curves in Figures 9 and 10, as in Figures
6 and 7, is large. Nevertheless, in Figure 9 the minimum values of the bubble radius rb by the
simplified and complete methods agree very well (up to 1 per cent). The agreement of maximum
values of the pressure at the pole p1 in Figure 10 is not so good. The maximum value of p1 by
the simplified method 2 is 45.2 Mbar, which is 66 per cent more than that by the complete method.
The plots of p1 by the simplified and complete methods have three jumps each. But the distance
between the jumps along the axis t− tc in the solid curve is about twice as much as that in the
dashed curve.

6.4. Simplified method 3 (present work)

Similar to the simplified method 2, the numerical solution to system (2) was obtained by the
simplified method 3 using exactly the same (or very close to those) values of the grid parameters,
which had been taken in computation by the complete method. In particular, the uniform moving
grid of 200 cells was utilized in the area of the bubble. In the near fluid zone rb5r5re, the
grid step was increased geometrically in the direction of its external boundary r=re. At any
moment in time, the size of the cell adjacent to the bubble surface was a quarter of the cell size
of the uniform grid in the bubble. The number of the grid cells was 700. It was taken that
Mgb* =0.2, abe* =300.

The results by the simplified method 3 (the dashed curves) in comparison with those by the
complete method (the solid curves) are presented in Figures 11–13, and are similar to Figures
8–10. Excellent quantitative agreement between the dashed and solid curves is observed in both
figures. Qualitative agreement is also good enough. For example, the difference of the minimum

Figure 11. Same as in Figure 5 but by the simplified method 3 ( · · · ) and the complete method (—).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 157–174



DYNAMICS OF SMALL BUBBLE IN COMPRESSIBLE FLUID 173

Figure 12. Same as in Figure 6 but by the simplified method 3 ( · · · ) and the complete method (—).

Figure 13. Same as in Figure 7 but by the simplified method 3 ( · · · ) and the complete method (—).

values of the radius rb (Figure 12) and the difference of the maximum values of the pressure
at the pole p1 (Figure 13) are less than 3 and 13 per cent respectively.

7. CONCLUSION

A low-cost but sufficiently accurate simplified method of solving problems of dynamics of a
small gas bubble in a compressible fluid is proposed. The numerical results by this simplified
method are found to be in good agreement with those by the complete method based on the
full statement of the problem. A comparison of the numerical results by the complete method
and simplified methods similar to those [6,9] used in literature is also performed. Their
agreement in the final stage of the bubble collapse is shown to be significantly worse.
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Low time consumption and high accuracy of the proposed method result from the joint use
of the full statement (the gas dynamics equations for the gas and the fluid) and its possible
simplifications (the uniform rarefaction and compression of the gas in the bubble; slight
compressibility of the fluid in its thin zone adjacent to the bubble; linear acoustics in the far
fluid zone).

The problem statement (1)–(5) does not include many physical aspects of the bubble
dynamics (heat conductivity, viscosity, vibrational degrees of freedom, etc.), which are not
necessary according to the objective of the present work. Clearly, the numerical solution taking
them into account will require more computer time. In such a case, the proposed method
correspondingly modified will be even more efficient and helpful.
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